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Abstract

The human ability to efficiently discover causal theories of their environments
from observations is a feat of nature that remains elusive in machines. In this
work, we attempt to make progress on this frontier by formulating the challenge
of causal mechanism discovery from observed data as one of program synthesis.
We focus on the domain of time-varying, Atari-like 2D grid worlds, and represent
causal models in this domain using a programming language called AUTUMN.
Discovering the causal structure underlying a sequence of observations is equivalent
to identifying the program in the AUTUMN language that generates the observations.
We introduce a novel program synthesis algorithm, called AUTUMNSYNTH, that
approaches this synthesis challenge by integrating standard methods of synthesizing
functions with an automata synthesis approach, used to discover the model’s latent
state. We evaluate our method on a suite of AUTUMN programs designed to express
the richness of the domain, and our results signal the potential of our formulation.

1 Introduction

Children are born scientists [4, 5, 9]. Without being told the rules, they can figure out how a new
toy or video game works—a full causal theory of which stimuli cause which changes—after just
minutes of observation. Such a data-efficient and flexible ability to discover causal models has yet
to be demonstrated in an artificial agent. In this paper, we seek to address this gap by framing the
problem of discovering a causal model from observed data as one of program synthesis. We represent
a causal model as a program in a domain-specific language (DSL), and as such are able to exploit
two key advantages of programs: their ability to express complex designs very concisely, and that
they can often be synthesized from small input data. In this work, we focus specifically on the
domain of time-varying mechanisms in 2D Atari-like grid worlds, and design a functional reactive
language called AUTUMN to succinctly represent a wide variety of interesting causal phenomena
within these worlds (Figure 1). The input to an AUTUMN program is a sequence of user events
(either clicking anywhere on the grid, pressing an arrow key, or no event), one per time step. The
output is a corresponding sequence of grid frames, each a partially observed representation of the
underlying AUTUMN program state. Our goal is to build a program synthesis engine which, given the
output sequence of observed frames and the associated user events, produces the best program in the
AUTUMN language that generates the observations.

Critically, despite the natural fit of programs as a model representation for causal discovery, the
AUTUMN domain does introduce a complication not handled by most existing program synthesis
algorithms. To understand this aspect, we first note that, though the overall AUTUMN synthesis
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Figure 1: Sequence of grid frames from the Ice program. At times 1 and 4, the user presses down
(red arrow), releasing a blue water particle from the gray cloud. The water moves down to the lowest
possible height, moving to the side (time 10) if necessary to reach this height. The user presses down
again at time 12, and then clicks anywhere (red circle) at time 15. The click causes the sun to change
color and the water to turn to ice, which stacks rather than tries to reach the lowest height. A down
press at time 19 releases another ice particle from the cloud. Finally, a click at time 24 changes the
sun color back to yellow and turns the ice back to water, which again seeks the lowest possible height.

problem is to construct a program that takes a sequence of inputs to a sequence of outputs, the setting
is also reactive: The output sequence is constructed one time step at a time from the user event at that
time and the program state that summarizes what has happened in the program over all the previous
time steps. Thus, the program (function) that we wish to synthesize is one that takes as input the
current program state and user event, and produces as output a modified program state corresponding
to the next time. However, while most methods for functional synthesis from input-output data
assume that both the inputs and outputs are fully observed [2], we never directly observe the full
AUTUMN program state. Instead, we only have access to the grid frames, which are partial views of
the underlying program states produced by a rendering function. Further, while there exist synthesis
approaches that reconstruct hidden elements from partially observed inputs, our problem requires that
we learn how these latent elements are modified over time, instead of just what they are at one time.
Specifically, a full AUTUMN program state consists of a set of objects, each storing a 2D position and
shape along with potentially some internal (latent) data fields, as well as global latent elements that
are not tied to any particular object. The values of these time-varying latent variables may pivotally
impact the rendered grid objects, but they are never directly exposed themselves. As such, part of the
AUTUMN synthesis challenge becomes reconstructing the appropriate values and dynamics of the
latent state in the generating program.

For concreteness, we give an example of this additional fold in our problem formulation via an
AUTUMN program called “Mario” (Figure 2). In Mario, the agent (red) moves around with arrow key
presses and can collect coins (yellow). If the agent has collected a positive number of coins, on a
click event, a bullet (purple) is released upwards from the agent’s position, and the agent’s coin count
is decremented. The number of coins that the agent possesses is not displayed anywhere on the grid
at any time, so the only way to write an AUTUMN program that captures this behavior is to define an
internal or latent variable, which tracks the number of coins (bullets) possessed by the agent. This
involves both setting the variable’s initial value, as well as learning functions that dictate when (on
what stimulus) and how (increment, decrement, etc.) that value will change. Notably, though a simple
exercise for a human, this identification of latent state represents an elevation of the standard program
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Figure 2: Stills (ordered but not consecutive) from the Mario model. The red agent initially cannot
shoot bullets (purple), but after jumping up and collecting coins (yellow), shoots on a user click. The
agent can no longer shoot when all its bullets are used up. A bullet kills the blue enemy.

synthesis paradigm to a new regime. While much work exists on learning latent state representations,
including structured representations like those in AUTUMN [6, 8, 10], the integration of dynamical
latent state discovery methods with standard methods of synthesizing functions is novel, as far as we
know.

To solve the AUTUMN latent state learning problem, we first clarify that we can reasonably parse
the visible elements of the program state—the object shapes and positions—directly from the grid
frames, but cannot do the same for invisible elements, which include internal object-specific and
global fields like numCoins. We address this challenge by making a key insight: The invisible state in
AUTUMN programs can be viewed as finite state automata (FSMs), where the labels on the automata
transitions are simply AUTUMN predicates (over the visible and invisible state). As such, we design
our synthesis algorithm for AUTUMN programs, called AUTUMNSYNTH, to be a fusion of standard
methods of functional synthesis with techniques drawn from the largely orthogonal area of automata
synthesis. At a high level, AUTUMNSYNTH first attempts to synthesize small component functions in
the full generating program without constructing new invisible state. Upon failure of this attempt,
the method uses a novel automata synthesis algorithm to enrich the original program state with new,
compact latent elements, which then enable the previous functional synthesis step to succeed.

The most relevant prior work to our problem setting are approaches that synthesize reactive models
as finite state machines. These approaches, however, cannot handle model state as complex as our
framing, in which objects may be created and destroyed and may each have their own hidden state in
addition to coordinates [11]. Further, these approaches often begin with specifications in the form of
temporal logic formulas instead of an observed sequence [7]. The other line of related work is that of
functional synthesis approaches that can synthesize transformations on very complex data structures,
but have no concerns about discovering latent state, e.g. work by Ellis et. al. on inferring graphics
programs from hand-drawn images [3].

We give more details about the AUTUMNSYNTH algorithm as well as the AUTUMN language in
Section 2. Then, in Section 3, we describe the results of evaluating our synthesis algorithm on a
benchmark dataset constructed to highlight the diversity of the AUTUMN domain. We note that, in
the rest of the paper, we will use the term latent state to specifically refer to invisible state, though,
technically, the full program state is latent since it is all viewed through a rendering function.

2 The AUTUMNSYNTH Algorithm

The AUTUMN language was designed to concisely express a rich variety of causal mechanisms
in interactive 2D grid worlds. The language is functional reactive, indicating that it augments the
standard functional language definition with primitive support for temporal events. The key elements
of an AUTUMN program are (1) object type definitions, (2) object instance and latent variable
definitions, and (3) on-clauses. The most interesting component to synthesize are these on-clauses,
which describe the causal dynamics of the model via a set of statements with the syntax on event
update, where event is a predicate and update is a modification to an object that overrides the
object’s default behavior. See Appendix B for details and sample AUTUMN programs.

Synthesizing the correct AUTUMN program from observed data involves determining the object
types, object instance and latent variable definitions, and on-clauses described previously. The
AUTUMNSYNTH algorithm, as an end-to-end synthesis algorithm taking images as input, consists of
four distinct steps, each producing a new representation of the input sequence. These steps are (1)
perception, in which objects are parsed from the observed grid frames; (2) object tracking, which
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Figure 3: The latent state automaton learned for the Water Plug program. The last clicked of the
top-row purple, orange, and blue buttons dictates which colored cell is added upon clicking free
positions. Top: A sequence of frames (with time jumps) from the model. Left: Diagram of the learned
state machine. Right: The AUTUMN description of the structure (we renamed the raw synthesized
output variable names with more meaningful names for simplicity of exposition).

involves assigning each object in a frame to either (a) an object in the subsequent frame, deemed to be
its transformed image in the next time, or (b) no object, indicating that the object was removed in the
next time; (3) update function synthesis, in which AUTUMN expressions, called update functions,
describing each object-object mapping from Step 2 are determined; and (4) event synthesis, in which
AUTUMN predicates that trigger each update function from Step 3 are sought. Event synthesis also
involves synthesizing invisible state in the form of automata, in the case that an appropriate predicate
that triggers a given program update cannot be constructed from the existing program state structure.
Specifically, when we cannot find an AUTUMN predicate that causes a particular object update,
we augment the program state with a new latent variable taking a particular series of values over
time, where this latent variable may be used to construct a predicate matching the trigger times of
the update. On-clauses that perform updates (value changes) to this latent variable correspond to
transitions in the latent variable’s automaton diagram (Figures 3 and 4). See Appendix C for details.

3 Experiments

We curated a benchmark suite of 26 AUTUMN programs to evaluate our synthesis algorithm, and
stills from a subset of these programs are displayed in Appendix A. We summarize statistics about

Figure 4: The latent state automaton learned for Mario (with similar variable renaming as above).
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the synthesis procedure for each of these models in Table 1 in Appendix A. Though these results are
still preliminary, our algorithm is able to synthesize a majority (24 out of 26) of these programs up to
the success criterion defined in the Appendix, and is also able to discover interpretable latent state
automata underlying these programs. For example, the automata learned for the Water Plug model
(described in the Appendix) and the Mario model are shown in Figures 3 and 4.
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Appendix

A Full Results

Model Name Input Length (Frames) On-Clause Count Contains Latent State? Synthesized?

PARTICLES 22 2 No Yes

ANTS 24 3 No Yes

CHASE 42 7 No Yes

ICE 27 10 No Yes

LIGHTS 24 2 No Yes

MAGNETS 53 7 No Yes

SPACE INVADERS 42 11 No Yes

SOKOBAN 25 7 No Yes

DISEASE 22 7 Yes Yes

GROW 40 - Yes No

SANDCASTLE 32 - Yes No

BULLETS 54 18 Yes Yes

GRAVITY I 19 9 Yes Yes

GRAVITY II 24 14 Yes Yes

GRAVITY III 27 32 Yes Yes

GRAVITY IV 48 18 Yes Yes

COUNT I 22 6 Yes Yes

COUNT II 39 10 Yes Yes

COUNT III 69 14 Yes Yes

COUNT IV 109 18 Yes Yes

DOUBLE COUNT I 156 10 Yes Yes

DOUBLE COUNT II 94 18 Yes Yes

WIND 21 9 Yes Yes

PAINT 27 10 Yes Yes

WATER PLUG 42 10 Yes Yes

MARIO 81 19 Yes Yes

As this work is still ongoing, we currently define a success in our evaluation if the synthesized
program produces an output sequence that is consistent with the observed data, which means that it
produces the correct observed sequence upon being evaluated on the given input user event sequence.
In other words, we declare success even if the synthesized program does not exactly match the
ground-truth generating program. In practice, we find that many of the synthesized programs are
almost exactly the ground-truth program, except in cases of ambiguity in the observation sequence.
For example, it is often the case that multiple events are a match for triggering an update function,
such that an output program using any of them would technically match the observations. The way
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Figure 5: Stills from a selection of AUTUMN programs in the evaluation suite. From top-left to
bottom-right: water interacting with a sink, a clone of Space Invaders, plants growing under sunlight
and water, magnets, ants foraging for food, water destroying a sandcastle, an alternative gravity
simulation, and snow falling in windy conditions.

to disambiguate between multiple matches is to check the hypothesis program’s evaluation against
additional, independent input sequences, or against a forecast of the existing input sequence into
the future. Further, defining a scoring function that assigns all technically correct solutions a value
related to how “good” that program is (perhaps according to a prior distribution over the space of
programs) would also allow us to select from multiple options. These strategies remain part of our
future work.

In addition, we have not yet fully standardized our evaluation, in that we presently modify both
the event and update function search spaces between models to lessen the impact of ambiguity and
improve performance, along with some low-level modifications to the algorithm. We give some
additional details about these aspects of our evaluation in Appendix D, because many are better
understood having read the more detailed description of the synthesis algorithm in Appendix C. We
also note that we selected input observation sequences for each evaluation model manually, in a way
that we knew was compatible with our heuristic-based automata synthesis algorithm. We have not yet
fully studied the degree of manual input curation necessary for our synthesis procedure to succeed,
though this (along with algorithm modifications to alleviate this limitation) remains an important
priority for future work. Finally, while we take care to emphasize to the reader that our results are
still preliminary and should not be the basis of overzealous speculation, the fact that the complex
dynamics, and especially latent state automata, that underlie these models is being captured in some
form by our procedure is exciting.

B The AUTUMN Language

Every AUTUMN program is composed of four parts (Figures 6 and 7). The first part defines the grid
dimensions and background color. The second part defines object types, which are simply structs
which define an object shape, or a list of 2D positions each associated with a color, as well as a
set of internal fields, which store additional information about the object (e.g. a Boolean healthy
field may store an indicator of the object’s health). The third part defines object instances, which
are concrete instantiations of the object types defined previously, as well as latent variables, which
are values with type int, string, or bool. Object instances and latent variables are defined using
a primitive AUTUMN language construct called initnext, which defines a stream of values over
time via the syntax var = init expr1 next expr2. The initial value of the variable (expr1) is
set with init, and the value at later time steps is defined using next. The next expression (expr2)
is re-evaluated at each subsequent time step to produce the new value of the variable at the present
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time. Further, the previous value of a variable may be accessed using the primitive prev, e.g. prev
var. Indeed, the next expression frequently utilizes the prev primitive to express dependence on
the past. For example, the definition of the Mario object in the example program from the intro-
duction is mario = init (Mario (Position 7 15)) next (moveDownNoCollision (prev
mario)), indicating that later values of Mario should move down one unit from the previous value
whenever that is possible without collision.

Finally, the fourth segment of an AUTUMN program defines what we call on-clauses, which are
expressed via the high-level form

on event
intervention,

where event is a predicate (Boolean expression) and intervention is a variable update of the
form var = expr, or multiple such updates. As suggested by the name intervention, an on-clause
represents an override of the default modification to a variable that is defined in the next clause.
In particular, when the event predicate evaluates to true, the new value of the variable var at that
specific time is computed by evaluating the associated intervention instead of the standard next
expression. Each on-clause may contain multiple update statements for different variables, and a
single program may contain multiple on-clauses. In the latter scenario, the on-clauses are evaluated
sequentially, with the effect that later on-clauses may update a variable in a way that composes with
updates from earlier on-clauses, or completely overrides it. In the rest of the discussion, we use the
term update function to mean the same as intervention.

C The AUTUMNSYNTH Algorithm

We describe each of the four steps of the AUTUMNSYNTH algorithm below, with greatest space given
to the fourth step of event and latent state synthesis, since that procedure represents the most novel
aspect of our work. We note first that, for simplicity, we elect to define each object in our synthesized
program with the trivial next expression, prev obj, and instead express default object behavior
using the “default” on-clause

on true
update_function.

When this on-clause is first in the list of on-clauses, it acts as the default behavior that takes place
when later on-clauses evaluate to false and hence do not override it. Using this equivalent form in our
synthesized programs simplifies our discussion by allowing us to describe synthesis as just involving
determining object types, initial (not next) object and latent values, and on-clauses.

C.1 Step 1: Perception

In the perception step, each frame in the observation sequence is parsed into a set of object variables.
Each object variable is characterized by a shape, which is a list of 2D grid positions relative to (0, 0)
that are each associated with a color, as well as an origin, which indicates the location of the object in
the grid frame (the positions of the shape are translated by the origin to obtain the final rendering
of each object). We use two different object parsing algorithms, each of which produces a different
representation. We perform the rest of the synthesis procedure atop both of these parsing results one
at a time, and take the output program from the first parsing using which the procedure succeeds.

The first parsing algorithm (“multi-cell”) is based on a breadth-first search pixel crawler, which
identifies groups of adjacent cells with the same color as multi-celled objects. This approach currently
supports only uniform-colored objects instead of individual objects composed of multiple colors.
Extending this algorithm to handle more diverse object renderings is an area of future work. Object
types are extracted from the union of the parsed object sets over all frames by finding shapes that
contain the same 2D positions, though not necessarily the same colors. Shapes that support multiple
colors are described by object types that have a custom field 〈color, string〉, which allows individual
instances of the object type to specify a particular color. The second parsing algorithm (“single-cell”)
simply identifies each colored cell in a frame as an individual object, with the set of object types
being the set of single-celled shapes each with a particular fixed color.
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Figure 6: AUTUMN program for the Sandcastle model, with frames (ordered, but with time jumps in
between) taken from a sample evaluation. The last of the top two buttons clicked dictates whether a
sand particle or water particle is added upon clicking a free position. If water is adjacent to sand, it
changes the dry field of the sand, so that it changes color and behaves as a liquid (i.e. moves to the
lowest reachable height) as opposed to stacking.
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Figure 7: AUTUMN program describing the Water Plug model. In the first frame, the purple structure
at the bottom is a vessel, and the orange structure is a plug that does not let water pass into the
vessel. Excluding the top row of buttons, purple squares are vessel particles, orange squares are plug
particles, and blue squares are water particles. Clicking an uncolored (free) position adds a particle to
that position, where the type of particle depends on which of the top-left three buttons was clicked
last. The right-side frames are in order (from top to bottom) but with time jumps: the user events
during these jumps are the following: 1-2: clicking several free positions (new purple); 2-3: clicking
top orange button then several free positions (new orange); 3-4: clicking top blue button then several
free positions (new blue, though water moves down rather than being stationary); 4-5: clicking black
button (orange removed); 5-6: clicking red button (all removed).
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C.2 Steps 2 and 3: Object Tracking and Update Function Synthesis

Together, the second and third steps in the synthesis procedure answer the question, “What does each
object do at each time step?” Concretely, this means identifying the update function undergone by
each object in each frame to produce the object’s rendering in the subsequent frame. The first element
of answering this question is object tracking (Step 2), which involves assigning each object in a frame
either to (1) an object in the subsequent frame, which is considered to be the transformed image of
the object after the time step, or (2) no object, which means that the object has been removed after
the time step. Multiple objects may not map to the same object in the subsequent frame, and further,
objects in the subsequent frame without a pre-image in the previous frame are deemed to have been
just added to the program in the current time. The algorithm that performs this mapping is based
upon a heuristic that embodies the following prior assumption about object motion in AUTUMN:
Objects are unlikely to move very far in a single time step. As such, the tracking algorithm performs
assignments based on a proximity metric that tries to maximally assign objects in one frame to their
closest objects (with the same object type) in the next frame.

Having determined which objects in a frame become which objects in the next, the update function
synthesis procedure (Step 3) computes an AUTUMN expression, the update function, that describes
every object-object, object-null, and null-object mapping. The null object simply represents a
non-existent object, so an object-null mapping indicates object removal and a null-object mapping
indicates object addition. To identify a matching update function, the procedure simply enumer-
ates through a space of update function expressions, such as obj = moveLeft obj or obj =
nextLiquid obj. Since it is often the case that there are multiple update functions that correctly
describe a single mapping, we define a simple heuristic (based on how common an update function
is across objects of a type) to select one update function from a set of correct options. At the end
of the update function synthesis procedure, the synthesized update functions may be visualized in a
matrix depiction, which we call the update function matrix. In the update function matrix, the rows
represent object_id’s, where objects are assigned the same object_id if one is transformed into the
other over time, and the columns display the update function undergone by each object at each time.

While the above procedure is effective in some scenarios, we have actually found that the ambiguity
in deciding which update function should be chosen for each object-object mapping has made using a
slightly relaxed version of our heuristic more successful. In this case, rather than producing a single
update function matrix as output, the update function synthesis procedure actually produces a list of
possible matrices, each with a different combination of update functions across cells. We perform the
rest of the synthesis procedure with each matrix until the first successful output program is produced.

C.3 Step 4: Event Synthesis

By this stage in the synthesis process, the object types, the object instance definitions, and the update
functions undergone by each object at every time have been identified. Remaining to be synthesized
are the event predicates associated with the update functions in on-clauses, and potentially latent
variables that are necessary for the appropriate events to exist. At a high level, the event synthesis
step answers the simple question, “Why does each object do what it does in each time step?”

To synthesize events, we first define a finite set of AUTUMN predicates, which roughly embodies
a prior about what types of events are likely to be triggers of changes in the grid world. We call
these predicates atomic events, because we ultimately enumerate both through the events themselves
as well as conjunctions and disjunctions of those atoms when searching for a matching event. The
atomic event set includes global events, including user events like clicked, clicked obj1, and
leftPress as well as object contact events like intersects obj1 obj2 and adjacent obj1
obj2, among other forms. These stand in contrast to the other type of event in the atomic event set,
called an object-specific event, which takes different values for distinct object_id’s in addition to
distinct times. These events are effectively implemented as functions in a filter operation; for example,
the event obj.color == “red” is true for an object if the object is contained in the filtered list

filter (obj -> (obj.color == “red”)) objects,

where objects denotes the set of all objects at the current time. We note that while the evaluation
of a global event over time consists of a single vector of true/false values (one per time), the full
evaluation of an object-specific event consists of a set of such vectors, one per distinct object_id.
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Figure 8: The latent state automaton for numCoins learned in the Mario example. Note that the
learned automaton is the finite version of a more general Mario program, in which Mario can collect
an uncountably infinite number of coins. Since we feed our synthesis procedure a finite trace, we
cannot expect to learn the infinite automaton directly. In future work, however, we aim to capture
this generalization via an abstraction step. Further, we note that the state numbers are simply labels,
though they do happen to align with the contextual meaning of coin count. In particular, we could
permute the three labels 0, 1, and 2 and still possess an automaton that explains the observed data. In
fact, we actually did permute the labels of the raw automaton produced by our synthesizer to create
this diagram, for ease of understanding. The raw output automaton had the 2 and 1 labels flipped.

Next, we describe the set of update functions for which we must find associated events. In our setting,
we make the assumption that objects that belong to the same object type are all controlled by the
same set of on-clauses. This means that if two objects both undergo the update moveLeft and the
objects have the same object type, then a single event (on-clause) caused both of them to undergo the
update. In contrast, if two objects undergo moveLeft and belong to different object types, we must
synthesize a different event associated with each one, since a different on-clause caused each object
type’s update. Thus, we synthesize events by enumerating through the object types, and finding an
event for each distinct update function that appears across objects of that type.

Lastly, for each update function under consideration, we construct what is called an update function
trajectory, which is a set of vectors v ∈ {−1, 0, 1}T that describes the times when the update function
took place versus did not take place (T is the length of the observation sequence). There is one
vector for each object_id with the object type under consideration. Each vector position is 1 if the
update function took place at that time for that object_id, 0 if it did not take place, and −1 if it may
have taken place but could have been overridden by another update function. This third scenario
is interesting, and arises because we structure synthesized AUTUMN programs so on-clauses with
update functions that are more frequent in the observed sequence are ordered before on-clauses with
less frequent update functions. Thus, those later on-clauses with always override the earlier ones.
With respect to event search, an event is a match for an update function if it is true for every time and
object_id for which the update function trajectory vector is 1, and false whenever it is 0. The event
may be either true or false when the corresponding update function trajectory value is −1.

Notably, if the number of unique vectors in an update function trajectory is 1, then the matching event
may be a global event, because there is no variance based on object-specific features. Otherwise, if
there is more than one unique vector in the trajectory, then the matching event must be an object-
specific event, since the evaluated vector depends on the particular object_id. It is possible that a
matching event may not be found in either of these cases, which signals that we must enrich the
program state with new elements that were not used in the original event space. For simplicity, in the
following section about latent state synthesis, we focus only on the case where the unmatched update
function trajectory contains a single unique vector. This setting is called global latent state synthesis;
the alternative setting, called object-specific latent state synthesis, is a straightforward extension.

C.3.1 Discovery of Latent State: Automata Synthesis

The input to the automata synthesis step is an update function trajectory composed of a single vector
v ∈ {−1, 0, 1}T . The goal of the procedure is to design the simplest latent state automaton that
enables us to write a latent-state-based event predicate that matches v.
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This problem statement is best illustrated with an example. Consider the Mario program from the
introduction. As discussed, the bullet addition function does not have an event that perfectly matches
its trajectory of occurrence versus non-occurrence (update function trajectory). Indeed, the event
clicked co-occurs with every occurrence of a bullet addition, but there are times when clicked is
true but no bullet addition takes place. These are the times when the number of coins possessed by
Mario is zero, but there is no way to express this event using the existing program state representation,
in which the only variables are the object variables. The latent state automaton described below
alleviates this expressiveness limitation:

% initialize latent variable
numCoins : Int
numCoins = init 0 next (prev numCoins)
% define dynamics of variable
on intersects (prev mario) (prev coins)

numCoins = (prev numCoins) + 1
on clicked && ((prev numCoins) > 0)

numCoins = (prev numCoins) - 1

The automaton diagram associated with this AUTUMN description is shown in Figure 4. With this
new latent variable numCoins, the event

clicked && ((prev numCoins) > 0)

suddenly is a perfect match for the update function trajectory vector v for bullet addition, so that we
can write the following on-clause:

on clicked && ((prev numCoins) > 0)
bullets = addObj (prev bullets) (Bullet (prev mario).origin).

Having developed a concrete example, we return to the challenging part of the problem, which is
actually synthesizing the numCoins latent variable (along with its associated on-clauses) from the
observed data alone. We do this by first framing our problem with respect to the classic formulation
of automata synthesis given input-output examples. Classically, the problem of inductive automata
synthesis is to determine the minimum-state automaton that accepts a given set of accepted input
strings (positive examples) and rejects a given set of rejected input strings (negative examples) [1]. In
our scenario, these positive and negative input “strings” may be determined from the sequence of
program states (one per time) corresponding to the observation sequence. In particular, we consider
the set of prefixes (sub-arrays starting from the first position) of the program state sequence that have,
as their last element, a program state where the optimal co-occurring event is true. The optimal
co-occurring event is defined to be the event that co-occurs with the update function in question, and
has the minimum number of false positive times, i.e. times when the event is true but the update
function does not occur. In the Mario example, this co-occurring event is clicked. We then partition
the set of program state sequence prefixes into those that end with a program state in which the update
function took place and those in which it did not take place. The former set is the set of positive
examples and the latter is the set of negative examples in our automata synthesis problem.

This definition of positive and negative input strings may be understood by considering the fact that,
if there existed a latent state automaton that fit this specification, then the event

co_occurring_event && (latent_var in [/* accepting state labels */])

would be a perfect match for the update function. This is because the co-occurring event is true during
a set of false positive times with respect to the update function trajectory, and the latent automaton is
in rejecting states at exactly those times (since those times correspond to the rejected program state
prefixes). Thus, finding such an automaton would mean we would have an event that matches the
update function under consideration.

To synthesize automata, we first recognize that a single automaton may provide the latent structure
necessary to define the matching predicate for multiple distinct update functions, instead of just
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one. We thus employ a heuristic algorithm that first groups update functions into sets for which one
automaton will be sought. The algorithm then starts with a small automaton (i.e. small number of
states), and tries to determine transition events that result in the appropriate program state sequences
being accepted and rejected, for each update function in the group. If no such transition event can
be found that perfectly partitions the input sets into positive and negative, then the number of states
in the automaton is increased by splitting one of the existing states into two states. This process of
searching for transition events and dividing a state into two on failure is repeated until success.

D Additional Evaluation Details

The in-progress nature of our submission manifests in the fact that our evaluations across different
models are not yet fully standardized. Specifically, we modify the event and update function search
spaces (i.e. by adding and/or removing some elements) between models to try and minimize scenarios
of ambiguity, along with other low-level modifications to the algorithm. In particular, since our
enumeration procedure through the event predicate space is currently just blind enumeration, we only
compute conjunctions and disjunctions of atom expressions up to a depth of 2 atoms for performance
reasons. As a result, we occasionally seed the event space with events that themselves contain
conjunctions and disjunctions, so that combinations with greater depth may be effectively constructed
with just depth-2 enumeration. This is necessary for models where the events have more than 2 atoms.
We intend to use more sophisticated enumeration procedures, e.g. SyGuS solvers, to overcome these
performance bottlenecks in the final version of the algorithm. Standardization of these variations are
currently in progress and a priority for future work.

Lastly, instead of completely raw images, we currently send a slightly more processed version of
the images to the synthesis engine as input, namely a list of 2D pixel positions with colors. The
significance of this representation is that, if two objects overlap at one pixel, the synthesizer does
not need to figure out from that pixel’s color and transparency value (all Autumn renderings are
partially transparent) that there are really two overlapping colors there. Instead, the input will already
include two elements with the same x-y coordinates and color, e.g. {(x, y, color), (x, y, color)}.
This detangling of pixels with overlap into their individual components can be trivially performed by
storing a mapping between all RGBA values formed via overlaps of a finite number of colors, and
the lists of colors that compose them. We will implement this procedure in the final version of the
algorithm.

E Sample Synthesized Program

Below is an example raw output from the synthesis procedure, where we have added new line and
space characters in the on-clause expressions to aid readability.

E.1 Ice Output

1 (program
2 (= GRID_SIZE 8)
3 (= background "white ")
4 (object ObjType1 (: color String) (list (Cell 0 -1 color) (Cell 0 0

color) (Cell 1 -1 color) (Cell 1 0 color)))
5 (object ObjType2 (list (Cell -1 0 "gray" ) (Cell 0 0 "gray" ) (

Cell 1 0 "gray" )))
6 (object ObjType3 (: color String) (list (Cell 0 0 color)))
7

8 (: obj1 ObjType1)
9 (: obj2 ObjType2)

10

11 (: addedObjType1List (List ObjType1))
12 (: addedObjType2List (List ObjType2))
13 (: addedObjType3List (List ObjType3))
14

15 (= obj1 (initnext (ObjType1 "gold" (Position 0 1)) (prev obj1)))
16 (= obj2 (initnext (ObjType2 (Position 4 0)) (prev obj2)))
17
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18 (= addedObjType1List (initnext (list) (prev addedObjType1List)))
19 (= addedObjType2List (initnext (list) (prev addedObjType2List)))
20 (= addedObjType3List (initnext (list) (prev addedObjType3List)))
21

22

23 (: time Int)
24 (= time (initnext 0 (+ time 1)))
25

26 (on clicked (= obj1 (updateObj (prev obj1) "color" "gold")))
27 (on (& clicked (== (.. (prev obj1) color) "gold"))
28 (= obj1 (updateObj (prev obj1) "color" "gray")))
29 (on left (= obj2 (moveLeft (prev obj2))))
30 (on right (= obj2 (moveRight (prev obj2))))
31 (on true
32 (= addedObjType3List
33 (updateObj addedObjType3List
34 (--> obj (nextLiquid (prev obj)))
35 (--> obj true))))
36

37 (on (== (.. (prev obj1) color) "gray")
38 (= addedObjType3List
39 (updateObj addedObjType3List
40 (--> obj (moveDownNoCollision (prev obj)))
41 (--> obj true))))
42

43 (on clicked
44 (= addedObjType3List
45 (updateObj addedObjType3List
46 (--> obj (updateObj (prev obj) "color" "blue"))
47 (--> obj true))))
48

49 (on (& down (== (.. (prev obj1) color) "gray"))
50 (= addedObjType3List
51 (addObj addedObjType3List
52 (ObjType3 "lightblue" (move (.. obj2 origin) (Position 0

1))))))
53

54 (on (& clicked (== (.. (prev obj1) color) "gold"))
55 (= addedObjType3List
56 (updateObj addedObjType3List
57 (--> obj (updateObj (prev obj) "color" "lightblue "))
58 (--> obj true))))
59

60 (on (& down (== (.. (prev obj1) color) "gold"))
61 (= addedObjType3List
62 (addObj addedObjType3List
63 (ObjType3 "blue" (move (.. obj2 origin) (Position 0 1)))

))))
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